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Loss of synchronization in coupled oscillators with ubiquitous local stability
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The issue of using instantaneous eigenvalues as indicators of synchronization quality in coupled chaotic
systems is examined. Previously, it has been assumed that, if the eigenvalues of the linearized synchronization
dynamics have negative real parts everywhere on the attractor, the synchronized state is stable. In this Rapid
Communication, two counterexamples are presented that show this assumption is invalid.
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The determination of necessary and sufficient conditi
for high-quality synchronization of chaotic systems is c
rently an open question and the subject of much discuss
This question is of growing importance as chaotic wa
forms emerge as possible candidates for spread-spec
communication or radar waveforms. In this Rapid Comm
nication, we address the issue of using instantaneous ei
values as indicators of synchronization quality and sho
with two counterexamples, that an assumption that has b
cited for assuring high-quality synchronization is invalid.

For two chaotic oscillators with unidirectional couplin
determining the stability of a synchronized state usually
quires calculating the Lyapunov exponents for the respo
system, and synchronization is expected when all the ex
nents are negative@1#. However, it is well known that this
condition does not always assure high-quality synchron
tion due to localized instabilities within the attractor@2,3#.
Consequently, various stronger constraints have been
posed that incorporate the local synchronization dynam
@4–9#. Among these constraints, it has been tacitly postula
that a sufficient condition for high-quality synchronizatio
can be expressed using the instantaneous eigenvalues o
driven response system@5,9#. Explicitly, it is assumed that if
the eigenvalues of the linearized synchronization dynam
have negative real parts everywhere on the attractor, the
chronized state is stable. Intuitively this makes sense:
local dynamics appear everywhere contracting. Indeed,
criterion was employed with great success to optimize
choice of scalar coupling and maintain synchronization
tween chaotic systems with large parameter mismatch@5#.

However, the use of instantaneous eigenvalues to de
mine the stability of time-varying systems can be misleadi
For example, we consider the simple linear oscillator w
time-varying coefficients

j̈10.1j̇1~110.9 cost !j50, ~1!

where the dot denotes differentiation with respect to timt.
Equation~1! is a particular case of Mathieu’s equation wi
damping@10#. Although this linear oscillator exhibits pos
tive damping, the equilibrium statej50 is actually unstable
due to a resonance excited by the parametric modulation
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In

constructing the two counterexamples shown below, we
this unstable oscillator as a model for the linearized synch
nization dynamics.

Interpretation of the instability in Eq.~1! in terms of the
system’s instantaneous eigenvalues and eigenvectors is
intuitive; however, that negative eigenvalues can all
growth in a linear system is not surprising. Indeed, it
known that non-normal, constant-coefficient linear syste
with negative eigenvalues can exhibit an initial growth b
fore decaying exponentially@9#. Geometrically, this transien
growth is due to nonorthogonal eigenvectors with eigenv
ues indicating different decay rates. For certain initial con
tions, motion parallel to the eigenvector corresponding to
fast decay rate carries the system state away from the e
librium point before the dynamics along the slow eigenve
tor eventually bring the state back to equilibrium. In a tim
varying linear system such as Eq.~1!, one anticipates tha
such transient growth can be sustained by the changing
genvalues and eigenvectors, thereby providing a poss
mechanism for instability.

To investigate synchronization, we consider two identi
chaotic oscillators with unidirectional coupling. The driv
system is

u̇5 f ~u!, ~2!

whereu5u(t) is a vector of drive system states andf is a
nonlinear vector function defining the flow. For the follow
ing, it is assumed that system~2! exhibits chaotic dynamics
The response system is

v̇5 f ~v !1@g~u!2g~v !#, ~3!

wherev5v(t) is a vector of response system states andg is
a vector coupling function, possibly nonlinear. Loosely,g(u)
can be identified as the signal transmitted from the dr
system to the response system.

For any trajectoryu(t) generated by drive system~2!, the
synchronization state

v~ t !5u~ t ! ~4!

is a solution of response system~3!. To investigate the sta
bility of this state, we define

«5v2u, ~5!
03-1
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which evolves as

«̇5@ f ~v !2 f ~u!#2@g~v !2g~u!#. ~6!

For small perturbations from the synchronization state,
dynamics can be approximated as

«̇5J«, ~7!

where

J5D f ~u!2Dg~u! ~8!

andD f (u) andDg(u) contain the partial derivatives of th
functionsf andg with respect to their arguments and eva
ated along the drive trajectoryu(t). In general, coefficient
matrix ~8! is time varying and the stability of the synchron
zation state cannot be immediately inferred. To assure h
quality synchronization, it has been assumed that a suffic
condition is that all the instantaneous eigenvalues of ma
~8! have negative real parts everywhere on the attractor@5,9#.
However, we present two counterexamples to show this
sumption is invalid.

For the first counterexample, we consider two coup
Rossler oscillators of the forms~2! and~3!, where the flow is

f S x
y
z
D 5S 2y2z

x10.2y
0.21z~x24.5!

D ~9!

and the coupling function is

gS x
y
z
D 5S 2z

0.3~y2x!20.08125x2

y1z~x23.5!
D . ~10!

The simply folded band attractor generated by flow~9! is
shown in Fig. 1. The corresponding coefficient matrix~8! is

FIG. 1. Phase space projection of the Rossler attractor gene
by flow ~9! and showingx.28.
05520
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J5S 0 21 0

1.310.1625x 20.1 0

0 21 21
D . ~11!

The instantaneous eigenvalues for this matrix are21 and
20.056A21.297520.1625x. As seen in Fig. 1, the attrac
tor is characterized byx.28; thus, the eigenvalues hav
negative real parts everywhere on the attractor, which s
gests the synchronization state is stable. However, nume
integration of the drive and response systems shows
high-quality synchronization is not attained. A typical res
of numerically integrating the system defined by Eqs.~2!,
~3!, ~9!, and~10! is shown in Fig. 2@11#. In this example, a
small initial deviation«0 between the drive and respons
systems is introduced att50. As the coupled system
evolve, the magnitude of the deviation~calculated using the
standard Euclidean norm! grows exponentially, indicating a
divergence of the drive and response systems due to uns
linear synchronization dynamics. Ultimately, the deviati
grows to the size of the attractor, where nonlinear effe
become important and the rate of divergence is affected
this point, synchronization is lost. In fact, for the couple
Rossler systems, the response system is often driven f
the chaotic attractor~with z,0! and grows unbounded. Fo
example, an initial departure from the attractor is evident
Fig. 2 att.800.

It is important to note that the fundamental instability
this example is not due to nonlinear effects: the synchro
zation state is linearly unstable. To show this, we exam
linear system~7! with time-varying coefficient matrix~11!.
Writing «5(«1 ,«2 ,«3)T, we immediately see that the«1
2«2 subsystem decouples to give

ḧ10.1ḣ1~1.310.1625x!h50, ~12!

ted
FIG. 2. Loss of synchronization for the Rossler systems w

coupling ~10!, including the expected exponential divergence fro
the initial deviation«0 due to the single positive Lyapunov expo
nenth150.012.
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where«15h and«252ḣ. ~For completeness,«3 is driven
as «̇35ḣ2«3 .! Equation~12! is similar to unstable linea
oscillator ~1!, except that the periodic coefficient in~1! is
now replaced by the chaotic drivex. Althoughx is not peri-
odic, it does exhibit a strong spectral component due
Rossler’s simply folded band attractor, and it is reasonabl
expect that Eq.~12! may exhibit instability due to parametri
resonance. Indeed, numerical integration shows that s
tions to Eq.~12! grow unbounded, implying that the linea
synchronization dynamics are unstable. Furthermore, ca
lations of the Lyapunov exponents for the response sys
~using a standard numerical technique@12#! yield h1
50.012,h2520.112, andh3521.000. Since the Lyapuno
exponents are derived from the linearized synchroniza
dynamics, the existence of a positive exponent confirms
the synchronization state for the coupled Rossler system
linearly unstable. As seen in Fig. 2, the rate of divergence
the coupled oscillators is consistent with the linear instabi
predicted byh1.0.

For the second example, we consider two coupled Lor
oscillators, with

f S x
y
z
D 5S 10~y2x!

x~282z!2y
xy22.6667z

D ~13!

and

gS x
y
z
D 5S 10y29.95x2z2

x~272z!

x~y11.445!22.6167z
D . ~14!

The familiar Lorenz attractor generated by flow~13! is
shown in Fig. 3. For the coupled system, coefficient ma
~8! is

FIG. 3. Phase space projection of the Lorenz attractor gener
by flow ~13! and showingz.0.
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J5S 20.05 0 2z

1 21 0

21.445 0 20.05
D ~15!

and the instantaneous eigenvalues are21 and 20.05
6A22.89z. As seen in Fig. 3, the Lorenz attractor hasz
.0; thus, the eigenvalues have negative real parts ev
where on the attractor. For this example, we designed
«12«3 subsystem of linear system~7! with coefficient ma-
trix ~15! to mimic unstable oscillator~1!. Shown in Fig. 4,
numerical calculations of the coupled Lorenz systems in
cate that small perturbations from the synchronization s
grow with time, ultimately growing to the size of the attra
tor and synchronization is lost@13#. Calculations of the re-
sponse system Lyapunov exponents yieldh150.03, h2
520.18, andh3520.95, which confirm that the synchron
zation state for the coupled Lorenz oscillators is linearly u
stable.

Although these counterexamples demonstrate that the
stantaneous eigenvalues ofJ are insufficient for assuring
stable synchronization, a sufficient condition based only
the instantaneous eigenvalues of the symmetric matriJ
1JT has been developed@3#. It is, if all eigenvalues ofJ
1JT are negative everywhere on the attractor, the synch
nization dynamics are necessarily stable. The sufficiency
this condition can be easily proven using straightforwa
techniques. For the two counterexamples presented heJ
1JT is characterized by a positive eigenvalue through
each attractor; thus, this stronger condition is clearly not m
and stability is not assured for either example. Unfortunate
this condition appears to be overly strong for many cases
couplings can be found that do not meet this requirement
still provide a stable synchronization state.

ed
FIG. 4. Loss of synchronization for the Lorenz systems w

coupling ~14!, including the expected divergence from the initi
deviation «0 due to the single positive Lyapunov exponenth1

50.03.
3-3
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In conclusion, we have shown by counterexample t
requiring the instantaneous eigenvalues for the synchron
tion dynamics to have negative real parts everywhere on
attractor is insufficient for assuring high-quality synchro
zation of coupled chaotic systems. However, we ackno
edge that these counterexamples employ contrived c
plings, chosen specifically to excite a resonant instabil
a,

I:

05520
t
a-
e

l-
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.

For many practical systems with more conventional co
pling, this requirement may provide effective results@5#.

The author wishes to acknowledge Dan Hahs for help
to identify this problem and Jonathan Blakely, Shawn Peth
Charles Bowden, and Krishna Myneni for many valuab
comments and suggestions.
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