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The issue of using instantaneous eigenvalues as indicators of synchronization quality in coupled chaotic
systems is examined. Previously, it has been assumed that, if the eigenvalues of the linearized synchronization
dynamics have negative real parts everywhere on the attractor, the synchronized state is stable. In this Rapid
Communication, two counterexamples are presented that show this assumption is invalid.
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The determination of necessary and sufficient conditiongonstructing the two counterexamples shown below, we use
for high-quality synchronization of chaotic systems is cur-this unstable oscillator as a model for the linearized synchro-
rently an open question and the subject of much discussiomization dynamics.

This question is of growing importance as chaotic wave- Interpretation of the instability in Eq1) in terms of the
forms emerge as possible candidates for spread-spectrusystem’s instantaneous eigenvalues and eigenvectors is not
communication or radar waveforms. In this Rapid Commu-intuitive; however, that negative eigenvalues can allow
nication, we address the issue of using instantaneous eigegrowth in a linear system is not surprising. Indeed, it is
values as indicators of synchronization quality and showknown that non-normal, constant-coefficient linear systems
with two counterexamples, that an assumption that has beawith negative eigenvalues can exhibit an initial growth be-
cited for assuring high-quality synchronization is invalid.  fore decaying exponentiallj®]. Geometrically, this transient

For two chaotic oscillators with unidirectional coupling, growth is due to nonorthogonal eigenvectors with eigenval-
determining the stability of a synchronized state usually re-ues indicating different decay rates. For certain initial condi-
quires calculating the Lyapunov exponents for the responsgons, motion parallel to the eigenvector corresponding to the
system, and synchronization is expected when all the expdast decay rate carries the system state away from the equi-
nents are negativgl]. However, it is well known that this librium point before the dynamics along the slow eigenvec-
condition does not always assure high-quality synchronizator eventually bring the state back to equilibrium. In a time-
tion due to localized instabilities within the attracf®,3].  varying linear system such as E@.), one anticipates that
Consequently, various stronger constraints have been presuch transient growth can be sustained by the changing ei-
posed that incorporate the local synchronization dynamicgenvalues and eigenvectors, thereby providing a possible
[4-9]. Among these constraints, it has been tacitly postulatednechanism for instability.
that a sufficient condition for high-quality synchronization To investigate synchronization, we consider two identical
can be expressed using the instantaneous eigenvalues of ttieaotic oscillators with unidirectional coupling. The drive
driven response systel,9]. Explicitly, it is assumed that if system is
the eigenvalues of the linearized synchronization dynamics
have negative real parts everywhere on the attractor, the syn- u=f(u), 2
chronized state is stable. Intuitively this makes sense: the ) ) )
local dynamics appear everywhere contracting. Indeed, thi¢hereu=u(t) is a vector of drive system states ah a
criterion was employed with great success to optimize thélonl[ngar vector function defining 'gh(_a flow. F_or the foI_Iow—
choice of scalar coupling and maintain synchronization belnd. it is assumed that syste(@) exhibits chaotic dynamics.
tween chaotic systems with large parameter mismggh ' N€ response system is

However, the use of instantaneous eigenvalues to deter- :
mine the stability of time-varying systems can be misleading. v="F(v)+[g(u)—g(v)], (©))

For example, we consider the simple linear oscillator with

. . o wherev =v(t) is a vector of r n tem stat i
time-varying coefficients erev =v(t) is a vector of response system states @il

a vector coupling function, possibly nonlinear. Loosejt))
can be identified as the signal transmitted from the drive
system to the response system.

For any trajectory(t) generated by drive syste(8), the
synchronization state

£40.1£+(1+0.9c08)£=0, (1)

where the dot denotes differentiation with respect to time

Equation(1) is a particular case of Mathieu’s equation with

damping[10]. Although this linear oscillator exhibits posi- v(t)=u(t) (4)

tive damping, the equilibrium state=0 is actually unstable

due to a resonance excited by the parametric modulation. Iig a solution of response syste). To investigate the sta-
bility of this state, we define

*Electronic address: ned.corron@ws.redstone.army.mil e=v—Uu, (5)
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FIG. 2. Loss of synchronization for the Rossler systems with

FIG. 1. Phase space projection of the Rossler attractor generate@upling (10), including the expected exponential divergence from

by flow (9) and showing«> — 8.

which evolves as

e=[f(v)—f(W)]-[g(v)—g(W]. (6)

For small perturbations from the synchronization state, the

dynamics can be approximated as

(7)

e=Js,
where

J=Df(u)—Dg(u) (8
andDf(u) andDg(u) contain the partial derivatives of the
functionsf and g with respect to their arguments and evalu-
ated along the drive trajectony(t). In general, coefficient
matrix (8) is time varying and the stability of the synchroni-
zation state cannot be immediately inferred. To assure hig
quality synchronization, it has been assumed that a sufficie

condition is that all the instantaneous eigenvalues of matrit

(8) have negative real parts everywhere on the attrg6tor.
However, we present two counterexamples to show this a:
sumption is invalid.

For the first counterexample, we consider two couple
Rossler oscillators of the form®) and(3), where the flow is

X —-y-z
fly|=| x+02 )
z 0.2+2z(x—4.5)
and the coupling function is
X —Z
gl y|=|0.3y—x)—0.08125%2 (10)
z y+2z(x—3.5

The simply folded band attractor generated by fl@®y is
shown in Fig. 1. The corresponding coefficient matgx is

the initial deviatione, due to the single positive Lyapunov expo-
nenth;=0.012.

0 -1 0
J=|( 1.3+0.162% —-0.1 O (11
0 -1 -1

The instantaneous eigenvalues for this matrix ar® and
—0.05+ —1.2975-0.162%. As seen in Fig. 1, the attrac-
tor is characterized bx>—8; thus, the eigenvalues have
negative real parts everywhere on the attractor, which sug-
gests the synchronization state is stable. However, numerical
integration of the drive and response systems shows that
high-quality synchronization is not attained. A typical result
of numerically integrating the system defined by E(®,

(3), (9), and(10) is shown in Fig. Z11]. In this example, a

psmall initial deviatione, between the drive and response
mystems is introduced at=0. As the coupled systems

volve, the magnitude of the deviatiécalculated using the
standard Euclidean nopngrows exponentially, indicating a

%j_ivergence of the drive and response systems due to unstable
i

near synchronization dynamics. Ultimately, the deviation

rows to the size of the attractor, where nonlinear effects

ecome important and the rate of divergence is affected; at
this point, synchronization is lost. In fact, for the coupled
Rossler systems, the response system is often driven from
the chaotic attractofwith z<0) and grows unbounded. For
example, an initial departure from the attractor is evident in
Fig. 2 att>800.

It is important to note that the fundamental instability in
this example is not due to nonlinear effects: the synchroni-
zation state is linearly unstable. To show this, we examine
linear system(7) with time-varying coefficient matrix11).
Writing e=(e1,,,£3)', we immediately see that the;

— &, subsystem decouples to give

7+ 0.1+ (1.3+0.1625) =0, (12)
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o FIG. 4. Loss of synchronization for the Lorenz systems with
FIG. 3. Phase space projection of the Lorenz attractor generate(gbup“ng (14), including the expected divergence from the initial
by flow (13) and showingz>0. deviation ¢, due to the single positive Lyapunov exponemt
=0.03.

wheree;=n ande,= — 7. (For completeness;s is driven

as e3=7—¢3.) Equation(12) is similar to unstable linear 005 0 >

oscillator (1), except that the periodic coefficient id) is '

now replaced by the chaotic drive Althoughx is not peri- J= 1 -1 0 (15)
odic, it does exhibit a strong spectral component due to —1445 0 -—0.05

Rossler’s simply folded band attractor, and it is reasonable to

expect that Eq(12) may exhibit instability due to parametric

resonance. Indeed, numerical integration shows that solu-

tions to Eq.(12) grow unbounded, implying that the linear and the instantaneous eigenvalues aré and —0.05
synchronization dynamics are unstable. Furthermore, calcu+ \/—2.8%. As seen in Fig. 3, the Lorenz attractor has
lations of the Lyapunov exponents for the response systens0Q; thus, the eigenvalues have negative real parts every-
(using a standard numerical techniqué2]) yield h;  where on the attractor. For this example, we designed the
=0.012,h,=—0.112, anchz= —1.000. Since the Lyapunov ¢,— s, subsystem of linear systefid) with coefficient ma-
exponents are derived from the linearized synchronizatiorrix (15) to mimic unstable oscillatof1). Shown in Fig. 4,
dynamics, the existence of a positive exponent confirms thaiumerical calculations of the coupled Lorenz systems indi-
the synchronization state for the coupled Rossler systems tsate that small perturbations from the synchronization state
linearly unstable. As seen in Fig. 2, the rate of divergence o§row with time, ultimately growing to the size of the attrac-
the coupled oscillators is consistent with the linear instabilitytor and synchronization is lo$fi3]. Calculations of the re-

predicted byh,>0. sponse system Lyapunov exponents yidig=0.03, h,
For the second example, we consider two coupled Lorenz —0.18, anch;= —0.95, which confirm that the synchroni-
oscillators, with zation state for the coupled Lorenz oscillators is linearly un-
stable.
X 10(y —X) Although these counterexamples demonstrate that the in-

stantaneous eigenvalues dfare insufficient for assuring
stable synchronization, a sufficient condition based only on
the instantaneous eigenvalues of the symmetric makrix
+J7 has been developd®]. It is, if all eigenvalues of]
and +JT are negative everywhere on the attractor, the synchro-
nization dynamics are necessarily stable. The sufficiency of
X 10y — 9.9~ 22 this condition can be easily proven using straightforward
techniques. For the two counterexamples presented here,
9l Y= X(27-2) : (149 43T is characterized b itive ei
y a positive eigenvalue throughout
z X(y+1.443-2.6167 each attractor; thus, this stronger condition is clearly not met
and stability is not assured for either example. Unfortunately,
The familiar Lorenz attractor generated by floi3) is  this condition appears to be overly strong for many cases, as
shown in Fig. 3. For the coupled system, coefficient matrixcouplings can be found that do not meet this requirement yet
(8) is still provide a stable synchronization state.

fly|=|x(28-2)—y (13
z Xy—2.666%
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In conclusion, we have shown by counterexample thafFor many practical systems with more conventional cou-
requiring the instantaneous eigenvalues for the synchronizapling, this requirement may provide effective resuifs
tion dynamics to have negative real parts everywhere on the
attractor is insufficient for assuring high-quality synchroni-  The author wishes to acknowledge Dan Hahs for helping
zation of coupled chaotic systems. However, we acknowl{0 identify this problem and Jonathan Blakely, Shawn Pethel,
edge that these counterexamples employ contrived coucharles Bowden, and Krishna Myneni for many valuable
plings, chosen specifically to excite a resonant instabilitycomments and suggestions.
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